We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.
In this interview, AZoM talks to James Terrell from SciAps, about carbon grading in small parts and the implications this has for industry.
Even small parts are an integral part of the asset. The failure of small parts could lead to catastrophic consequences just like larger components.
Size and geometry present the biggest challenges. The ability of the testing equipment dictates the size of material it can accurately analyze.
The SciAps analyzer uses a patented purging technique for measuring carbon that does not require a sealing surface to create the inert atmosphere needed to measure carbon.
This small aperture still allows for analysis on small parts without the need for various adapters to accommodate the geometry or size of the part. Curved surfaces or surfaces smaller than the aperture are still able to be analyzed without the need for special adapters.
When utilizing conventional OES analyzers, the probe and aperture of the probe are larger and require a sealing surface at the burn chamber. If the part is smaller than the sealed area of the burn chamber, then you would need an appropriately sized adapter to accommodate that part.
The physical size and weight of an OES is also a disadvantage for fieldwork that requires working at elevated work platforms or in a ditch. The OES also requires a large argon bottle and external regulator to perform the analysis. This ultimately adds to the weight and size of the analyzer.
XRF is a reliable technique for measuring and identifying alloys, even on the smallest of parts. The downside of XRF is that it is not capable of measuring Carbon content. Therefore, it cannot grade materials such as L or H stainless steels.
LIBS is an optical emissions technique that utilizes a pulsed laser to ablate the surface of the material and create a plasma. An on-board spectrometer performs a qualitative measurement of the light from the plasma, separates the individual wavelengths to reveal elemental content, which is then quantified with the on-board calibration.
These instruments provide an efficient and cost-effective solution in a handheld device.
These handheld devices provide the owner/operator with a compact all in one, lightweight, cost-effective way to analyze incoming material, service/retro PMI material, welds, welding consumables and any critical component in their PMI program without the added labor or cost of buying sacrificial parts or collecting shavings and sending them to a lab and waiting on results.
On-site analysis eliminates the long waiting time that is often required to get results from the lab. It allows asset owners to continue to make critical decisions in real-time without having to send parts out to be analyzed. This type of flexibility allows the owners to continue to operate their assets or begin operating sooner, saving valuable time and money.
By utilizing the SciAps LIBs analyzers, the user can now analyze parts such as small weld wire without the need to deposit the wire to create a weld button for testing. It can also test small bore piping, bolting and small diameter round bars without the need or cost for additional adapters to accommodate the part that is to be tested.
James joined the SciAps Team as a Subject Matter Expert (SME) for practical field application and solution provider for handheld XRF and LIBS technology in the chemical oil & gas industry. He has 30 years of experience in petrochemical, manufacturing, fabrication, new construction, and maintenance.
James will be focusing on business development for practical field application solutions in these technologies that will help the end user to safely and efficiently confirm, verify, and identify, alloy and carbon steel materials that could be susceptible to industry issues such as rouge material in process units, or identifying damage mechanisms like low silicon content (sulfidic corrosion) in carbon steel pipe.
James began working in the industry in 1987 in construction as a pipefitter and welder and then eventually spent his last 6 years in construction management as a General Foreman and then Construction Superintendent. James began his own PMI business in 1997 utilizing handheld XRF and OES units performing these techniques in multiple segments of chemical oil & gas, power, manufacturing, and fabrication. He has been directly involved in various industry programs including retro-PMI programs, incoming material verification, welding applications, as well as restrictive element application such as HF Alky.
James started working as a PMI SME and Division Manager with Acuren Inspection in Houston Texas in 2009 and helped developed a PMI division that included developing PMI procedures and training technicians to perform the XRF and OES technologies to support the demand for PMI compliance. He also spent 4 years with Acuren as Director of Operations for the SW region.
James also worked as a Vice President of Operations for TUV SUD America Chemical Oil & Gas Division from 2015-2018. He was responsible for the day to day operations and developed a PMI division and program for TUV SUD and was a consumer of XRF and OES technologies.
He joined Thermo Scientific in 2018 to help facilitate the launch of the Niton LIBS analyzer before joining SciAps in 2020
This information has been sourced, reviewed and adapted from materials provided by SciAps, Inc.
For more information on this source, please visit SciAps, Inc.
Disclaimer: The views expressed here are those of the interviewee and do not necessarily represent the views of AZoM.com Limited (T/A) AZoNetwork, the owner and operator of this website. This disclaimer forms part of the Terms and Conditions of use of this website.
Please use one of the following formats to cite this article in your essay, paper or report:
SciAps, Inc.. (2022, February 03). Grading Carbon in Small Parts. AZoM. Retrieved on September 02, 2022 from https://www.azom.com/article.aspx?ArticleID=21242.
SciAps, Inc.. "Grading Carbon in Small Parts". AZoM. 02 September 2022. <https://www.azom.com/article.aspx?ArticleID=21242>.
SciAps, Inc.. "Grading Carbon in Small Parts". AZoM. https://www.azom.com/article.aspx?ArticleID=21242. (accessed September 02, 2022).
SciAps, Inc.. 2022. Grading Carbon in Small Parts. AZoM, viewed 02 September 2022, https://www.azom.com/article.aspx?ArticleID=21242.
Do you have a review, update or anything you would like to add to this article?
At the Advanced Materials Show 2022, AZoM caught up with the CEO of Cambridge Smart Plastics, Andrew Terentjev. In this interview, we discuss the company's novel technologies and how they could revolutionize how we think about plastics.
At the Advanced Materials Show in June 2022, AZoM spoke with Ben Melrose from International Syalons about the advanced materials market, Industry 4.0, and efforts to move toward net-zero.
At the Advanced Materials Show, AZoM spoke with Vig Sherrill from General Graphene about the future of graphene and how their novel production technique will lower costs to open up a whole new world of applications in the future.
The CVD Diamond from Element Six is a high purity synthetic diamond that is used for electronic thermal management.
Discover the CNR4 Net Radiometer, a powerful tool that can measure the energy balance between short-wave and long-wave Far Infrared radiation.
The Powder Rheology Accessory expands TA Instruments’ Discovery Hybrid Rheometer (DHR) capabilities to powders, enabling characterization of behaviors during storage, dispensing, processing, and end use.
This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.
Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.
Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.
AZoM.com - An AZoNetwork Site
Owned and operated by AZoNetwork, © 2000-2022